Integrating Air Quality, Energy Efficiency and Renewable Energy in Texas

Texas Air Quality Issue:

Failure to meet federal ozone standards in urban areas: Houston, Dallas, Port Arthur

Houston Air Quality Plan

- ** Adopted in December, 2000
- * Attainment required by 2007
- Most stringent NOx requirements in nation
- ** 80-90% reductions from industrial point sources
- ** State Plan for ground level ozone required additional rules for EE and new technology

Energy Efficiency and Renewable Programs

**Senate Bill 7, enacted in 1999

**Senate Bill 5, enacted in 2001

Senate Bill 7-Electric Restructuring Act

Requires at least 10% reduction of electric utilities growth in demand by Jan. 1, 2004 and each year thereafter

Requires 2000 megawatts of renewable energy

Senate Bill 5—The Texas Emissions Reduction Plan

- * Includes grants for cleaner diesel engines and fuels and grants for energy efficiency programs
- Requires uniform energy efficiency provisions in building codes
- Requires each political subdivision to establish a goal of 5% annual reduction in energy consumption. Requirement to submit an annual report demonstrating how the goal is being achieved.

The challenge:

- *integrating air quality and energy efficiency
- **SIP** credit
 - requires quantification of benefits and
 - > allocation of emission reductions geographically

Agency partnership

- ** Texas Natural Resource Conservation Commission
- * Texas Public Utility Commission
- * State Energy Conservation Office
- * Electric Reliability Council of Texas
- * U.S. Environmental Protection Agency

ERCOT Region

Methodology Overview:

- ** The inputs are the amount of expected energy savings (kWh) in 2007 for each service territory.
- *The outputs are an estimate of the emission reductions at each plant within the ERCOT region, which can be summed for each county

Methodology:

- 1. Estimate the amount of electricity generation that would be curtailed in each service area for a given amount of electricity demand savings in a particular service area
- 2. Estimate the amount of generation from each plant that would be curtailed for a given amount of generation curtailment in a particular service area.

Methodology continued

- 3. Combine information from the first two steps together to estimate the electricity generation reductions from each plant in the ERCOT region for a given amount of electricity demand reduction occurring in a particular service area
- 4. Apply plant specific emission factors to the curtailed generation at each plant
- 5. Cumulate the annual emission reductions at each location into county-wide totals

Next Steps:

** Explore the feasibility of developing a trading program for energy efficiency and renewable energy

* Encourage private investment in EE and RE

Issues

- ** Allocation of the credit for investment
- ** Trading program for multiple pollutants: NOx, SO2, CO, CO2
- * The challenge of Houston Cap and Trade
- ** Renewable technologies are not necessarily zero emission technologies, (e.g. fuel cells)
- **EPA** trading rules